正如两点之间可以画无数条曲线,“双碳"目标是确定的,但是要从中国当前的状态达到期望中的状态,中间可供选择的路径有无数种。为了优化实现“双碳"目标的路径,需要明确以下三个问题:第一,对“双碳"达标路径的准确描述和评估,这需要考虑与能源、经济、环境及社会等环节的关联,以及合理预估各种不确定性因素的影响;第二,“双碳"目标与能源安全、经济安全、环境安全的协同优化;第三,电力系统如何主动支撑“双碳"目标的实现。
电力系统是能源链的枢纽环节,以及经济社会发展的重要支撑。以新能源为主体的新型电力系统是电力发展与“双碳"目标之间关系的表述,而能源的信息-物理-社会系统(Cyber-Physic-Social System in Energy,或CPSSE)是实现“双碳"目标与能源转型路径优化的框架。
CPSSE中的信息元素,是指支撑大规模交流直流混合输电及电力电子装备入网,系统动态特性越加复杂的*信息技术,在迈向“双碳"目标的同时,保证我国的电力安全、能源安全、经济安全和环境安全。
CPSSE中的物理元素,是指在中国经济社会发展的碳约束条件下,能源领域是减少碳排放的主战场,新能源大规模替代火电,能源系统的复杂性、不确定性大幅提高,电力系统的枢纽角色将更为突出。
CPSSE中的社会元素,是指大规模新型负荷涌现,辅助服务与需求侧参与的问题更加紧迫,大量社会参与者的博弈行为,特别是政策与规则将影响电力系统的工况与响应,电力系统必须依靠更加智能的规划、调度及市场引导,才能支撑“双碳"目标。
本文尝试从电力系统、智能电网、CPSSE发展的过程,统筹考虑信息、物理、社会三个元素,提出实现“双碳"目标及能源转型路径优化的框架。
一、产品简介(SHHZHX-8200无线高压核相仪拥有雄厚的技术力量)
SHHZHX-8200 互联网定相系统(以下简称“系统")由互联网定相基站(简称“基站")与互联网定相手持机(简称“手持机")两部分组成。
该系统通过基站统一覆盖区域内的定相标准,在定相过程中,手持机只需一次采集,便可确定所采集的线路属于A、B、C三相中的哪一相,解决当前输电/配电线路相色标注混乱的问题。
基站安装在220V/380V电源处,采集其相位信号,并校准到的10kV线路,将该线路的A、B、C三相定义为基准相位信号。基站通过移动互联网将基准相位值发送给手持机,手持机将自己测得的相位值与基准相位值对比,可快速准确地辨别对应的相别。
二、系统构成(SHHZHX-8200无线高压核相仪拥有雄厚的技术力量)
2.1、基站部分
1、基站:获取基准相位信号,配合手持机进行定相。
2、GPS蘑菇天线:用于基站GPS卫星授时。
3、4G移动网络天线:用于基站连接2G/3G/4G移动网络信号。
4、380V电源线:用于基站连接380V电源。
5、GPS天线底座支架:用于固定GPS天线
2.2、手持机部分
配件盒:内含两个尖头端子、两根自检测试线、两根接地线。
手持机:内置GPS授时模块和4G通讯模块,配合基站完成定相工作。
充电器:9V2A用于手持机充电,5V1A用于发射器充电。
绝缘杆:长度为3m,用于220kV及以下高压核相。
X采集器:于封闭式开关柜采集相位信号。
弹力绑带:用于绑扎固定采集器。
Y采集器:于封闭式开关柜采集相位信号。
X发射器(备用):用于近程核相采集相位信号。
Y发射器(备用):用于定相及近程核相采集相位信号。
X发射器:用于近程核相采集相位信号。
Y发射器:用于定相及近程核相采集相位信号。
三、产品特性(SHHZHX-8200无线高压核相仪拥有雄厚的技术力量)
1、基站在固定地点不间断地采集信号,并将此信号作为定相的基准相位信号,再通过网络服务器将此基准相位信号发送给手持机,令手持机每次定相都有一个统一的参考色标。
2、一套基站可以匹配多台手持机同时进行定相工作。
3、若当前无任何手持机处于定相工作状态,基站会自动进入休眠模式,以节约网络流量及费用。
4、基站可选择三种通信运营商(移动、联通、电信)的2G/3G/4G移动网络。
5、基站具备相角差校准功能,可将当前380V三相相位信号校准到不同电压等级,一般校准到10kV。
6、手持机和基站均可根据GPS信号强弱自动切换PPS模式和授时模式。
7、手持机在无移动网络信号时,可先将相位值数据储存,再到有网络信号的地方与基站完成数据交换,进而完成定相工作。
8、所有定相过程的数据交换均由系统自动完成,避免人工操作的失误。
9、手持机无操作1小时自动关机。
10、发射器和手持机均内置可充电锂电池,且电池可拆卸更换,手持机采用9V2A充电器,发射器采用5V1A充电器。
11、手持机具备语音播报功能,能语音提示测量结果和操作步骤;定相时能清晰播报A相或B相或C相。
12、发射器可在5V~220kV电压范围内工作,电压低于1KV时请将发射器充电孔接地,电压高于220kV时需配置更长的绝缘杆。
13、发射器接触高压线时内置蜂鸣器响,底部2个指示灯交替闪烁。
14、结果判断(同相、异相)采用*标准,相位差≥30°为异相,相位差<30°为同相。
四、技术参数(SHHZHX-8200无线高压核相仪拥有雄厚的技术力量)
1、相位差准确度:误差≤5°。
2、频率准确度:±0.1Hz。
3、基站供电电源电压及频率:AC100V~420V,50Hz。
4、卫星PPS时钟误差:≤50ns。
5、发射器适用电压范围:5V~220kV。
6、发射器和手持机的大传输视距:约100米
7、手持机电池容量:2600mAh。
8、发射器电池容量:350mAh。
9、高压测量时泄漏电流:<10uA。
10、基站工作时功耗:<0.5W
11、发射器功耗:<0.1W
12、手持机功耗:<0.3W。
13、储存环境:-40℃- +55℃ 湿度≤95%RH。
14、重量:单台手持整机约5.5kg,基站整机约2kg。
15、手持机整机尺寸:长89cm*宽26cm*高11cm。
16、基站整机尺寸:长50cm*宽26cm*高11cm。
五、仪器简介(SHHZHX-8200无线高压核相仪拥有雄厚的技术力量)
5.1、基站简介
![]() | 基站接线: 1)380V三相火线与零线 2)GPS蘑菇天线 3)4G移动网络天线 基站基本功能 通过2G/3G/4G移动网络与服务器通信。 根据GPS时间与其他设备同步测量。 采样380V三相相位值,并将基准相位值发送给手持机。 |
5.2、手持机简介
指示灯: 异相红灯亮:两线路异相。 同相绿灯亮:两线路同相。 充电红灯亮:正在充电。 充电绿灯亮:电已充满。 按键: 1)长按开机或关机。 2)短按切换“近程核相"模式、“网络定相"模式和“无网定相"模式。 |
5.3、发射器简介
指示灯: 测量时:红灯和绿灯交替闪烁。 充电时:红灯亮正在充电,绿灯亮已充满。 蜂鸣器: 接触到高压带电线路则蜂鸣器响2秒,表示线路带电。 充电孔: 充电时:连接充电器。 自检时:连接测试线接地端。 检测时:连接接地线。 |
5.4、开关柜采集器简介
指示灯: 开机时:工作指示灯为红色常亮。 测量时:工作指示灯为绿色常亮。 充电时:充电指示灯充电为红色充满为绿色。 蜂鸣器: 接触到高压带电线路则每隔4秒蜂鸣一次,表示线路带电。 弹力带: 将采集器贴于母排或手车,用弹力带捆绑安装。 充电孔: 充电时连接充电器。 |
能源链中的一次能源通过电力系统转换成二次能源,将清洁、方便使用的电能传输、分配成为用户消费的终端能源。在可以预见的将来,大规模可再生能源的应用,能否顺利克服其不确定性与不易控制等技术特征带来的困难,很大程度上取决于电力系统能否实现有效而可靠的转换和平衡。
能源链在支撑经济社会发展的同时,也向大气层排放了大量以二氧化碳为主要代表的温室气体,后者严重制约了经济社会的可持续发展。能源链中的电力系统则是温室气体的主要排放源。随着应对气候变化成为全球共识,经济社会的发展也促使人们通过植树造林、碳捕获、利用与封存(CCUS)等手段增加碳汇。大气层温室气体浓度是增加抑或减少,取决于碳排放和碳汇之间的关系:当碳排放大于碳汇时,温室气体的浓度就会不断增加造成全球平均温度的上升,若其超过了大自然能自我修复的限定时,就会带来恶劣的自然灾害。
因此,能源链和碳元素链是紧密耦合的。以全球碳循环(2010~2019)情况为例,每年我们人为的化石燃料燃烧造成的碳排放(约340亿吨每年)远远超出自然的土地生态活动形成的碳汇(约130亿吨每年)与海洋生态活动形成的碳汇(约90亿吨每年)之和。因为动物的呼吸、火山活动、山火等都会产生碳排放,所以碳排放不可能降到零值,仅仅依靠碳减排难以实现碳中和。必须要增加足够的碳汇来抵消这部分的碳排放。当离碳中和目标越来越近时,不论是进一步减少碳排放,还是进一步增加碳汇,都会越来越困难。而社会资源在碳减排与碳增汇的配置决策上也需要优化。
为此,需要获取碳排放与碳汇的演化轨迹,并从中定性及定量评估碳中和的程度(例如取为碳汇量与碳排量的差值);优化碳中和的边际成本。由于目前我国的减排能力与经济发展要求之间还存在很大差距,因此碳排量还处于增速减缓的爬坡阶段,达峰后的碳排放量将经历波动下降、变速下降的阶段,而最终实现碳中和。其中,必须科学评估碳减排和增加碳汇的效益与机会成本,选择很优的决策来实现“双碳"达标。
上海华住转载其他网站内容,出于传递更多信息而非盈利之目的,同时并不代表赞成其观点或证实其描述,内容仅供参考。版权归原作者所有,若有侵权,请联系我们删除。